| GRIL POLICIES & PROCEDURES | | | | |----------------------------|-----------------------------|--------|--------------------| | Policy Name | Skill Development Programme | Number | GRIL/HR/SKD/2022-3 | # <u>Civil Supervisor & Foreman</u> [Structure/Highway] ## 1. Objective - To bridge the skill gap identified by PMs & DPMs of Supervisor & Foreman [Structure]. - To increase work productivity at project site. - To maintain quality of the work and to ensure safety. # 2. Methodology The training methodology shall be blend of both practical & theoretical where 50% comprises of theoretical and 50% practical. #### 3. Assessment The participants shall undergo pre-assessment to check the knowledge level before the training andpost assessment to check the knowledge level gained after the training. ### 4. Training Duration & Venue - The training programme shall be for 10 days and will undergo training on various topics. Training timing will be from 9:00 AM to 5:00 PM for all the 10 days. - All the participants shall reach the venue and stay for the entire programme. - Training venue Project Site ## 5. Training Effectiveness After 3 months of the training program, training effectiveness shall be measured by seeking feedback from the reporting manager or project manager through training effectiveness evaluation form # **Training Curriculum** | Day | Topics | Key Learning | Trainer | |--------------|-----------------------------|---|--| | | Introduction | Introduction about the programTraining objectivePre-Test (Written) | | | Day 1 | Assessment | Linear conversion of units Units of measurement | Mr. Santosh
Kumar Pandey | | | Measurement
&Mensuration | Basic principles of measurement, arithmetic, calculations | , | | Day 2 | Reading
Drawing | How to read Plan Section Elevation Standard procedure for reading drawing Drawing's specifications | Mr. Santosh
Kumar Pandey | | Day 3 &
4 | Concrete | Ingredient of Concrete Initial and final setting time of cement Grade of Concrete Different types of mix (Batch mix & Nominal mix) Workability test of concrete Filling of concrete cube for compressive strength Methodology for checking line, level, and alignment for various concreting works Methodology of concreting works Knowledge of cover Methodology of curing Knowledge of different type of vibrators, their influence area and use Knowledge of construction and expansion joints Preventive and corrective action to ensure the completion of preparatory works prior to concreting Types of Construction defects of reinforcement concrete | Mr. Santosh
Kumar Pandey
and QC Lab team | | Day | Topics | Key Learning | Trainer | |-------|-------------------|--|--------------------------------| | Day 5 | Reinforcemen
t | Components, materials, and toolsused in reinforcement works Unit's weight of reinforcement steelof different diameter Electrical safety of power tools for reinforcement works Interpret details from Bar bendingschedule Interpret specification and standardsprovided and apply it for fabricationand fixing of reinforcement Interpret and follow manufactures specification for fixing of mechanical coupler Procedures of stacking of reinforcement Basic knowledge of various types ofsteel such as Mild Steel, TOR steel &TMT stee Method to prevent reinforcementagainst rusting, and weathering effect Method of bundling and tagging ofrebars Visual quality check for reinforcement Max allowable wastage of rebar Method of segregation of reinforcement on basis of cutting length and dia to minimize wastage Sequence of inserting bars to fix reinforcement for various types ofstructures Lap length required for rebars basedon diameter How to calculate number & spacing of rebar in case of different diameterrebar used Importance of lap length & staggering of reinforcement Importance about providing coverblock Types and optimum use of bindingwire Basic reconciliation of reinforcement Rolling marking of reinforcement Check & ensure marking of rebars forspacing before commencement of work Check for bend, cutting length before fabrication & placing ofreinforcement | Mr. Santosh
Kumar
Pandey | | Day | Topics | Key Learning | Trainer | |-------|------------------------|---|---| | Day 6 | Formwork & Scaffolding | Checking of shutter boards for dimensional accuracy and rigidity Provision of lifting arrangement for heavy weight shutter boards or metalshutter boards Types of belts, slings used for liftingand their weight carrying capacity Repairing process for damagedshutters Accessories preparation such as wedges, beading, stoppers, and fillershutters Basic tools require for cutting, filling, levelling and compaction of earth Physical/visual checking for level andcompaction of ground surface Tools, tackles, consumables, materialand equipment required for shuttering and scaffolding works Working platform and access stairsfor safe working Preparatory works required prior toshuttering such as cleaning, removing of concrete laitance, shutter repairing Types of release agent used for different types of sheathing material Lifting and lowering of formworkmaterial Checklist for shuttering works Calculation of material quantity fromdrawings Preventive and corrective action tomeet the required standards of quality inscaffolding work Checklist for scaffolding works Line, level and alignment requiredfor erection of scaffolding work Scaffold components, materials andtools used in scaffolding works Different types of scaffolds system such as pipe &couplers and other common customized system scaffold (frame scaffold) for basic andcomplex structures Line, level and alignment required forscaffold Estimate materials, components and fixtures required in assigned activities under scaffolding work. | Mr. Santosh
Kumar
Pandey | | Day 7 | Quantity
surveying | Introduction QS Procedure Method of Measurement Exercise | Mr. Santosh
Kumar Pandey
& Site Billing
Team | | Day | Topics | Key Learning | Trainer | |--------|------------------------------------|--|-----------------------| | Day 8 | Health, Safety
&
Environment | Importance of HSE Roles & Responsibility for HSE Importance of PPEs Hazard Prevention & Measures Emergency Preparedness Fire Fighting Electrical Safety Housekeeping Traffic Management First Aid & CPR | Site HSETeam | | | Levelling | Basics of levelling | Mr. Santosh
Pandey | | Day 9 | Behavioural
Skills | Qualities of Supervisor/Foreman | Mr. Pramod
Misra | | Day 10 | Closing | Post Assessment | | *Site HR will be in loop in the entire process and coordinate as and when required